Using Sshuttle as a service
Mike R Oct 23, 2019,-6 min read

We use Sshuttle every day to route connectivity across our networks, its a great tool thats easy to
spin up and configure, and acts as a lightweight SSH-encrypted VPN (without all the hassles and
headaches of IPSEC)

If you’re unfamiliar with sshuttle, this is a good article describing its features

We use it so much that I started using it a service to make it easier to start, stop and restart my
tunnels, and I am managing my tunnels via Saltstack configuration

This articles shows how to set it up as a service on Centos 7
All the following steps can be done automatically with a Saltstack formula

(If youre using Puppet or Ansible, the steps are pretty much the same, just tailor it to your specific
tool)

All the scripts below are also hosted here: Github

1 — Service Account

On the server initiating sshuttle (client), create a dedicated Sshuttle service account and create an
SSH folder

root@client>

groupadd sshuttle

useradd -d /home/sshuttle -g sshuttle sshuttle

mkdir /home/sshuttle/.ssh

chown -R sshuttle:sshuttle /home/sshuttle
chmod 700 /home/sshuttle/.ssh

generate a secure SSH key

root@client>
ssh-keygen -0 -a 100 -t ed25519 -N "" -C "sshuttle_key" -f
/home/sshuttle/.ssh/id_ed25519

This will generate an ed25519 key pair

distribute the public key to whatever host you want to connect to (good practice is to create this
service account on each host, and add this key to this sshuttle account’s Authorized_keys file)

try to connect to the target server as sshuttle user to test basic SSH connectivity

root@client> su sshuttle
sshuttle@client> ssh targetServer

if you can SSH to the target, move on to next step

https://github.com/sshuttle/sshuttle
https://gist.github.com/perfecto25/6e9a0c982fb76401f720b661f1a8a9f1
https://gist.github.com/perfecto25/6e9a0c982fb76401f720b661f1a8a9f1
https://etherarp.net/sshuttle-a-vpn-for-the-lazy/

2 — Sudo access

Sshuttle client needs sudo access to modify your firewall (on client only, not on the target server)
add the following to “/etc/sudoers.d/sshuttle”, make sure theres an empty line before and after the
sudo line

sshuttle ALL=(root) NOPASSWD: /usr/bin/python /usr/share/sshuttle/main.py
/usr/bin/python --firewall 12*** 0

this allows non-root users (like our service account) to launch Ssshutle and modify the firewall with
ports 12xxx

3 — Install package

install Sshuttle on your client server

root@client> yum install sshuttle

4 — Service scripts

add 2 service scripts,

1st is a SystemD script that controls Sshuttle (for Init.d systems, see this Gist for sample init.d
script)

2nd is a Python script that reads in your sshuttle config file
root@client> vi /etc/systemd/system/sshuttle.service[Unit]
Description=sshuttle service

After=network.target[Service]

User=sshuttle

Restart=always

Type=forking

WorkingDirectory=/etc/sshuttle
ExecStart=/etc/sshuttle/sshuttle.py start

ExecStop=/etc/sshuttle/sshuttle.py stop[Install]
WantedBy=multi-user.target

reload systemd

systemctl daemon-reload

Now for the 2nd script — this pythons script reads data from your config.json file and starts, stops,
restarts the actual Sshuttle binary

create an /etc/ directory for sshuttle

mkdir /etc/sshuttle
chown sshuttle:sshuttle /etc/sshuttle

Su as “sshuttle” user and add the python start script, this will read in your Config file (json) and
start/stop the tunnel

sshuttle@client> vi /etc/sshuttle/sshuttle.py

2-8

https://gist.github.com/perfecto25/6e9a0c982fb76401f720b661f1a8a9f1

Save this python script (its on Github Gist) as/etc/sshuttle/sshuttle.py

1{logging.DEBUG
gging.handlers.SysLogHandler(
Logging.Formatter|
handler.setFormatter{formatter

Log.addHandler (handler)

"fetc/sshuttle/config. json
"sshuttle

gwv) .
need to pass argument: start | stop | restart
sys.exit()

sys.argv[l "help”, "--help®, "h
[“sshuttle.py start | stop | restart |

sys.exit()

sys.argv[l] [“start stop", "restart”, "status
[“usage: sshuttle.py start | stop restart | status")

sys.exit()

ttle config file present, exiting."

subprocess.check outpy which", "sshuttle"])
CalledProcessError:
[“sshuttle is not installed on this host"

sys.exit()

https://gist.github.com/perfecto25/6e9a0c982fb76401f720b661f1a8a9f1

This reads in a json config file, parses each hostname or IP and creates a tunnel. This script knows
for example if you want to proxy a single IP connection or an entire CIDR subnet

make script executable
chmod +x /etc/sshuttle/sshuttle.py

You can now start, stop and restart Sshuttle service using systemd

systemctl status sshuttle
systemctl start sshutle
systemctl stop sshuttle

5 — Config File
finally, you add a config file to tell sshuttle where you want to connect to and what networks you

want to route via the target hop server, you can add multiple hop servers and multiple networks that
you want to route via these hop proxies,

Add a new config.json

sshuttle@client> vi /etc/sshuttle/config.json{
"HopServerA": [
"12.182.293.180/32",
"129.33.78.18/32",
"129.13.280.0/24",
"sftp.somehost.com"
1,
"HopServerB": [
"11.38.26.0/24"
]

b

Start the tunnel

systemctl restart sshuttle

If you are using Saltstack, you can manage network tunnel configs for your hosts by passing data
pillars like this,

cat /srv/salt/pillar/servers/nycweb@l1.slssshuttle:
HopServerA:
- 12.182.293.180/32 # customer A
- 129.33.78.18/32 # customer B
- 129.13.280.0/24 # customer C
- sftp.somehost.com # ftp customer DHopServerB:
- 11.38.26.0/24 # customer F

the Saltstack init.sls formula (in the link above) will generate a config.json file based on this Pillar

This makes it easy to manage your Sshuttle tunnels via managed configuration code.

Update #1 — Keep Alive

I also updated this part of the sshuttle.py script, with some additional settings (based on my work
performance testing)

rpath = "-r {0}@{1} {2} -1 listen '0.0.0.0' --ssh-cmd 'ssh -o
ServerAlivelInterval=60' --no-latency-control".format(ssh_user, rhost, netrange)

This will allow your shuttle to listen on all interfaces so you use this host as a hop. If you want to
keep your sshuttle session private, change the 0.0.0.0 to 127.0.0.1

and this additional part

--ssh-cmd 'ssh -0 ServerAliveInterval=60' --no-latency-control'

makes sure your SSH heartbeat is resent every 60 seconds so your SSH connection doesnt go stale,
and that sshuttle doesn’t throttle your bandwidth on high speed networks.

Update #2 — Proxying via 2 or more hops

if you need to use sshuttle to hop over 2 or more hops to get to a destination, for example

server A needs to get to server D

server A can connect to server B but not C,D
server B can connect to server C but not D
server C can connect to D

your hops will look like this:
A>B>C>D

e el =

Picture 1: A needs to get to D, via B and C
the regular sshuttle configuration will allow you to hop A > B > C only

to get to D, you need to configure your sshuttle to use C as a hop to D, only after the 1st connection
is established between A and B

Configure your config.json on server A, adding colon-separated steps to each connection
route all connections to C via B (step 0), and all connections to D via C (step 1)

Shuttle will read the step sequence and initiate the Step 0 connection 1st, once its established, it will
start Step 1 connection 2nd (since you need Step 0 to be up before you can run Step 1)

Adding these steps ensures your connections come up in proper sequence.
config.json on server A{

"@:serverB": [
"serverC hostname or IP",
1

"1:serverC": [
"serverD hostname or IP"
]

by

restart sshuttle service on serverA

on server B, configure your config.json to route all D-bound routes over C (here, you dont need to
add steps since its a single connection)

config.json on server B

"serverC": [
"serverD hostname or IP"
1

b

restart sshuttle on server B
sshuttle iterates your config.json on serverA, and looks at the 1st connection (B>C)

it will then sleep for 3 seconds to allow this handshake to establish

0 der stark():
with open{conf} as jsondata:
data = json.load{jsondata)

far rhost in data.keys():
netrange = ""

& If single nebtwork, turn into List
it not type{data[rhost]) 1s 1ist:
networks = datafrhest].splicf)
else:
networks = data[rhost]

for network in networks:

& chack if CIDA format
ir " oin network:
netrange = netrange + " " + petwork
alge!
netrange = netrange + " " + socket.gethostbyname{network)
netrange = netrange.stripf}

build rpath
rpath = "-r {8}@{1} {2} -1 listen '8.8.8.8' --ssh-cmd 'ssh -0 SarverAliveInterval=88' --no-latency-control",Format{ssh_y
Lry:
print{"starting sshuttle.."}
log.infa("starting sshuttle Tor networks: %S via ¥s" % (netrange, rhost})
Subprocess.Popen| "sshuttle {}".Tormat{rpath), shell=Trus}
except CalledProcessErrar as err:
log.errar("error running sshuttle: %s" % strierr))

sleap to give connection time to establish S5H handshake, in case other conmections use this conn as a hop
Lime, sleep{3)

Once the 1st connection is up, it will attempt to connect C > D via this 1st connection (this happens
on serverB)

Also, by default sshuttle listens on 127.0.0.1 for any incoming requests, so on server B, make sure
you configured the sshuttle.py to listen on all interfaces, not just 127.0.0 .1, this will allow B to
proxy any incoming requests from external hosts, not just requests coming from itself.

if using Saltstack:

rpath = "-r {0}@{1} {2} -1 {{ salt['pillar.get']('sshuttle:listen',6 '127.0.0.1")
}} --ssh-cmd 'ssh -0 ServerAlivelnterval=60' --no-latency-
control".format(ssh_user, rhost, netrange)

and pass the Pillar data like this (if no pillar “listen” data is provided, it defaults to listening on
127.0.0.1

Server B pillar
sshuttle:
listen: 0.0.0.0
relays:
servercC:

- serverD ip or hostname

if you are not using Saltstack, just update /etc/sshuttle/sshuttle.py directly on server B to listen on
all interfaces

rpath = "-r {0}@{1} {2} -1 0.0.0.0 --no-latency-control".format(ssh_user, rhost,
netrange)

now when you initiate a connection from A, it will proxy like this:
A>B>C>D

Your final packet flow will look like this

{

serverB: [
"serverc” |1

1,

serverC: [/.

"serverD” -
]
} D
A A
A
- I S
3 \ '
= -)
1 (c
1
r
L B
{
serverC:[(2
"serverD"
I
}

—=======—===—=—==—======= E n d e im Gelande ==s=m==========—===—=====

	Using Sshuttle as a service
	1 — Service Account
	2 — Sudo access
	3 — Install package
	4 — Service scripts
	5 — Config File
	Update #1 — Keep Alive
	Update #2 — Proxying via 2 or more hops

