
FORMS3
Forms for z88dk C for Amstrad PCW

The standard input procedures of C via scanf may be sufficient for simple tasks, but we need more
advanced functions for more demanding applications. For example, when entering whole numbers,
only the digits 0 to 9 should be allowed with a freely definable maximum input length. Or the input
of a file name should be limited to the 8.3 format (plus drive specification).

FORMS3 is a library for the definition and operation of input forms under z88dk C. It consists of
the main files forms3.c and forms3.h, along with the helpers box.c, convert.c, and input.c and their
corresponding header files, plus the header file mytypes.h. To use the functions provided the client
program must include the header file forms3.h:

#include "forms3.h"

A form is made of a doubly linked list of form elements. A form element is either a field (feField) or
a button (feButton). Properties of the form elements include positioning on the screen, the text
entered or the activation of a button.

Field – feField

The following field types are supported:

Field type Description Sample input

ftText Text with up to 255 characters Hello, world!

ftNumNatural Natural numbers, only the digits 0 - 9 are allowed 2533

ftInteger Whole numbers, the digits 0 - 9 and a sign (+ or -) are allowed -1398

ftReal
Real numbers, the digits 0 – 9, a decimal character1, a sign (+
oder -) and, if necessary, an exponent are allowed

2,997925E+5

ftDate Date in the format DD.MM.YYYY 18.03.2021

ftFileName File name in 8.3 format with optional drive specification M:HELLO.TXT

Fields have a type (see above), a length (fieldLength), a caption, the position of the caption
(xCaption, yCaption), the position of the input area (xInput, yInput), the entered text (txt) and a
mandatory field property. Caption and text are dynamic variables, their memory requirement is
caption or text length + 1 bytes.

Button – feButton

Buttons have a type (ok, cancel, other), a position (x, y), a width, a caption and an activation state
(activated). They are activated with the Return key. If a button is left with the Tab key or with one
of the arrow keys, it is not activated.

1 The decimal character is set via the procedure setDecimalChar.

ok and cancel buttons are commonly used to confirm or cancel form entry. However, you can also
use other buttons as needed.

Activating a button ends the form entry. If a button of the type Cancel was pressed, then the check
of the mandatory fields is skipped; with the types ok and other, the form entry is only terminated if
all mandatory fields are filled in.

Initialisation - Definition of the form elements
One design goal of the form library was to make the use of the functionality as simple as possible
and to hide as much of the internals as possible. The initialisation of the form is therefore done via
the function initForms, which has two arguments: the number of forms to create, and a flag to
specify whether all forms should be initialized automatically or not. If the second argument is false,
then each form must be initialized individually using initForm when appropriate.

For the definition of the form elements, a function called initFormElements must be written with
the form index as the only argument. In this function, the elements are defined by calling addField
or addButton and get attached to each other using newAndLinkWithPrevElement. Details follow in
the sample application (see below).

Syntax:

addField(ftText, 20, 'Name', 10, 6, 17, 6);
 │ │ │ │ │ │ │
 │ │ │ │ │ │ └─ Y input
 │ │ │ │ │ └─ X input
 │ │ │ │ └─ Y caption
 │ │ │ └─ X caption
 │ │ └─ caption
 │ └─ field length
 └─ kind

addButton(Ok, 1, 18, 15, 'OK');
 │ │ │ │ │
 │ │ │ │ └─ caption
 │ │ │ └─ width
 │ │ └─ Y
 │ └─ X
 └─ kind

newAndLinkWithPrevElement();

Furthermore, the decimal point for the input of real numbers is set with setDecimalChar, e.g.
setDecimalChar(','), and the position of the message line is defined by setMessageLine, e.g.
setMessageLine(31). This is usually done at the beginning of the main program.

Memory management
The forms functionality works with dynamic memory allocation. The allocated memory must be
released when a form and its variables are no longer used by calling destroy with the form index as
the only parameter. After the destroy call the form data is no longer available. Or all forms can be
destroyed together by simply calling destroyAllForms.

In the end, after all form processing is done, the forms module must be closed by calling
closeForms. This frees the forms list.

Select a form
To work with a form (which has already been initialized), it must be selected by selectForm,
providing the form index. The selected form is then the current form and can be processed.

Start a form

The current form, which has been set by selectForm before, is started with the function
processForm. To process a form, it must have been initialized and selected.

Form operation

When the form has been started via processForm, the labels and controls appear at the specified
positions on the screen. The cursor is positioned in the first element and input can be started. Form
operation should be largely intuitive.

Input field
An input field begins with the caption. If the mandatory property is set, i.e. if it is a mandatory field,
this is indicated by an asterisk (*) in front of the caption. The maximum length of the entry is
indicated by a line behind the caption. At the beginning, the cursor is at the start of the field and
moves to the right as entries are made. It can be moved within the input area with the left and right
arrow keys to insert data elsewhere. The backspace and delete keys can be used to delete entries at
the cursor position to the left and right respectively. Pressing the CAN key clears the field
completely. Pressing the Tab or Down arrow key moves the cursor to the next field; pressing the Up
arrow key moves it to the previous field.

Button
On buttons, the only input option is the return key to activate. The arrow keys or the Tab key are
used to leave the button without activating it.
Activating a button ends the form entry, unless at least one mandatory field is not filled in and the
button pressed is not a Cancel button. In this case, an error message is displayed in the message
line.

Accessing form elements
Two functions make it possible to conveniently access certain form elements: with
getFormElement one gets the nth element in the list, with getField the nth field (whereby only
input fields are counted here) and with getButton the nth button (whereby only the buttons are
counted here).
For example, with element = getFormElement(5) you get a pointer to the fifth form element as
FormElement*. Or with button = getButton(1) you get the first button in the form as Button*.
Afterwards you can access the properties of the elements via the pointers.

Example getFormElement
FormElement *elem;
Field *field;
elem = getFormElement(3); // a text field, i.e. elementType = ftText
field = elem->field;
printf("Field content: %s\n", field->txt);

Example getField
Field *field;
field = getField(5);
printf("Field content: %s\n", field->txt);

Example getButton
Button *button;
button = getButton(2);
printf("Button activated: ");
if (button->activated) then
 printf("yes");
else
 printf("no");

Further form functions

formCancelled: abort check
If a Cancel button has been pressed, then the form data should not be used. The cancellation can be
easily checked with the formCancelled function following processForm:

if (formCancelled) {
 // actions upon termination
}
else {
 // actions upon confirmed input *)
}

isActivated: check whether a button has been activated
If you want to check whether a particular button has been activated, you can do this very simply
with isActivated:

if isActivated(2) {
 // actions with button no. 2 activated
}

Data conversion
Form fields always save the entered values as text. For example, if you have entered a value in an
integer field, it is still stored as a string in the form field, not as an integer. The conversion is
supported by functions in convert.h:

Funktion Beschreibung

stringToInteger string to integer value; 0 is returned if an error occurs

stringToFloat string to real value; 0 is returned if an error occurs

setFieldText
Form fields can be preset, which is already possible with the previous functions. But it is
particularly easy with setFieldText, here are a few examples:

setFieldText(1, "my preset text"); // text field – ftText
setFieldText(2, "-47"); // number field – ftInteger
setFieldText(5, "31.12.2021"); // date field – ftDate
There is no format check during presetting, i.e. the developer must ensure that the field text meets
the format requirements of the field type.

Sample application
The sample application creates two forms one after the other and starts them. After finishing the
input with the OK or the Cancel button, the field contents and the activation state of the buttons are
displayed in each case.

#include <stdio.h>

#include <conio.h>

#include "forms3.h"

#define FORM_STUDENT 0

#define FORM_ADDRESS 1

#define BUT_RIGHT_ARROW 1

#define BUT_LEFT_ARROW 1

#define BUT_OK 2

#define COL_LBL 2

#define COL_INP0 17

#define COL_INP1 13

FormElement *element;

// Initializes the form elements. This procedure is called from initForm.

void initFormElements(uint8_t formIdx) {

 uint8_t row;

 switch (formIdx) {

 case FORM_STUDENT:

 row = 6;

 addField(ftNumNatural, 5, "Student ID", COL_LBL, row, COL_INP0, row, true); // Field 1

 row += 2;

 newAndLinkWithPrevElement();

 addField(ftText, 20, "Name", COL_LBL, row, COL_INP0, row, true); // Field 2

 row += 2;

 newAndLinkWithPrevElement();

 addField(ftDate, 10, "Date of birth", COL_LBL, row, COL_INP0, row, false); // Field 3

 newAndLinkWithPrevElement();

 row += 2;

 addField(ftNumNatural, 8, "Course code", COL_LBL, row, COL_INP0, row, false); // Field 4

 row += 2;

 newAndLinkWithPrevElement();

 addField(ftText, 1, "Gender (M/F)", COL_LBL, row, COL_INP0, row, false); // Field 5

 row += 2;

 newAndLinkWithPrevElement();

 addField(ftFileName, 14, "Picture", COL_LBL, row, COL_INP0, row, false); // Field 6

 row += 4;

 newAndLinkWithPrevElement();

 addButton(other, 1, row, 15, "-->"); // Button 1

 newAndLinkWithPrevElement();

 addButton(cancel, 20, row, 15, "Cancel"); // Button 2

 break;

 case FORM_ADDRESS:

 row = 6;

 addField(ftText, 30, "Street", COL_LBL, row, COL_INP1, row, false); // Field 1

 row += 2;

 newAndLinkWithPrevElement();

 addField(ftNumNatural, 5, "Postcode", COL_LBL, row, COL_INP1, row, false); // Field 2

 newAndLinkWithPrevElement();

 addField(ftText, 20, "City", COL_LBL + 18, row, COL_INP1 + 13, row, false); // Field 3

 row += 2;

 newAndLinkWithPrevElement();

 addField(ftText, 20, "Telephone", COL_LBL, row, COL_INP1, row, false); // Field 4

 row += 2;

 newAndLinkWithPrevElement();

 addField(ftText, 30, "EMail", COL_LBL, row, COL_INP1, row, false); // Field 5

 row += 4;

 newAndLinkWithPrevElement();

 addButton(other, 1, row, 15, "<--"); // Button 1

 newAndLinkWithPrevElement();

 addButton(ok, 20, row, 15, "OK"); // Button 2

 newAndLinkWithPrevElement();

 addButton(cancel, 39, row, 15, "Cancel"); // Button 3

 break;

 }

}

// Writes the current field's text and moves to the next element.

void nextField() {

 printf("%s\n", element->field->txt);

 element = element->next;

}

// Displays a headline.

void headline() {

 clearScreen();

 puts("FORMS3 Test\n\n\n");

}

// The main function.

int main(void) {

 bool processing;

 uint8_t currentFormIdx;

 Button *button;

 bool confirmed;

 setDecimalChar('.');

 setMessageLine(31);

 initForms(2, true);

 processing = true;

 currentFormIdx = 0;

 confirmed = false;

 do {

 headline();

 if (currentFormIdx == FORM_STUDENT) {

 puts("*** Form 0 - Student ***");

 }

 else {

 puts("*** Form 1 - Address ***");

 }

 selectForm(currentFormIdx);

 processForm();

 // Evaluate button activation

 if (formCancelled()) {

 // Cancel button activated

 processing = false;

 }

 else {

 switch (currentFormIdx) {

 case FORM_STUDENT:

 // Right arrow button activated

 button = getButton(BUT_RIGHT_ARROW);

 if (button->activated) {

 currentFormIdx = FORM_ADDRESS;

 button->activated = false;

 }

 else {

 puts("Right arrow button should be activated, but it is not...");

 processing = false;

 }

 break;

 case FORM_ADDRESS:

 button = getButton(BUT_LEFT_ARROW);

 if (button->activated) {

 // Left arrow button activated

 currentFormIdx = FORM_STUDENT;

 button->activated = false;

 }

 else {

 button = getButton(BUT_OK);

 if (button->activated) {

 confirmed = true;

 button->activated = false;

 }

 else {

 puts("Ok button should be activated, but it is not...");

 }

 processing = false;

 }

 break;

 default:

 printf("Unknown form index: %d\n", currentFormIdx);

 }

 }

 } while(processing);

 // Show the results

 headline();

 selectForm(FORM_STUDENT);

 element = getFormFirstElement();

 if (confirmed) {

 puts("Input was confirmed.\n");

 }

 else {

 puts("Input was cancelled.\n");

 }

 puts("*** FORM STUDENT ***");

 printf("Student ID : "); nextField();

 printf("Name : "); nextField();

 printf("Date of birth: "); nextField();

 printf("Course code : "); nextField();

 printf("Gender : "); nextField();

 printf("Picture : "); nextField();

 selectForm(FORM_ADDRESS);

 element = getFormFirstElement();

 puts("\n*** FORM ADDRESS ***");

 printf("Street : "); nextField();

 printf("Postcode : "); nextField();

 printf("City : "); nextField();

 printf("Telephone : "); nextField();

 printf("EMail : "); nextField();

 destroyAllForms();

 closeForms();

 waitForKey();

 return 0;

}

	Field – feField
	Button – feButton
	Initialisation - Definition of the form elements
	Memory management
	Select a form
	Start a form
	Form operation
	Input field
	Button

	Accessing form elements
	Example getFormElement
	Example getField
	Example getButton

	Further form functions
	formCancelled: abort check
	isActivated: check whether a button has been activated

	Data conversion
	setFieldText
	Sample application

